Przestrzeń Hausdorffa

typ przestrzeni topologicznej

Przestrzeń Hausdorffa – wprowadzony przez Feliksa Hausdorffa rodzaj przestrzeni topologicznej o porządnych właściwościach. Ta naturalna własność była początkowo postulowana w definicji przestrzeni topologicznej, jednak wraz z rozwojem teorii wydzielono ją jako jeden z możliwych „aksjomatów oddzielania” nakładanych na abstrakcyjną przestrzeń topologiczną (zob. Przykłady). Z tego powodu o przestrzeniach Hausdorffa mówi się też, iż spełniają aksjomat „” bądź, według innej klasyfikacji, aksjomat „”; dla zwięzłości określa się je również jako „przestrzenie ” (bądź „”).

Punkty rozdzielone przez ich otoczenia otwarte

Przestrzeń topologiczną nazywa się przestrzenią Hausdorffa, jeżeli dla dowolnych dwóch różnych jej punktów można wskazać ich rozłączne otoczenia tzn. takie rozłączne zbiory otwarte tej przestrzeni, które spełniałyby oraz

Przykłady

edytuj

Większość naturalnych przykładów przestrzeni topologicznych spełnia własność Hausdorffa, w szczególności są to przestrzenie: liczb rzeczywistych z topologią naturalną (ogólniej przestrzenie euklidesowe), czy przestrzenie metryczne.

Każda przestrzeń regularna ( ) jest przestrzenią Hausdorffa ( ), lecz niekoniecznie na odwrót: przykładem może być przedział jednostkowy   z topologią otrzymaną jako rozszerzenie topologii naturalnej (tzn. prostej rzeczywistej) o zbiór  

Podobnie każda przestrzeń   jest przestrzenią  , choć niewykluczona jest sytuacja odwrotna – przykładami mogą być zbiór liczb rzeczywistych z topologią dopełnień skończonych, w której zbiorami otwartymi są tylko zbiór pusty i zbiory o skończonych dopełnieniach, czy analogicznie definiowaną topologią dopełnień co najwyżej przeliczalnych.

Własności

edytuj
  • Przestrzeń   jest Hausdorffa wtedy i tylko wtedy, gdy przekątna   jest zbiorem domkniętym w przestrzeni produktowej  
  • Niech   będą przekształceniami ciągłymi dowolnej przestrzeni topologicznej   w przestrzeń Hausdorffa   Wówczas zbiór   argumentów, na którym wartości tych funkcji są równe, jest domknięty w   W szczególności, jeśli wykresy   pokrywają na zbiorze gęstym przestrzeni   to są one równe.
  • Ciągi zbieżne w przestrzeni Hausdorffa mają wyłącznie jedną granicę, tzn. granica ciągu zbieżnego jest wyznaczona jednoznacznie.
  • Własność „hausdorffowości” przestrzeni jest dziedziczna, tzn. podprzestrzeń przestrzeni Hausdorffa jest przestrzenią Hausdorffa.
  • Przestrzeń produktowa przestrzeni Hausdorffa również jest Hausdorffa.
  • Zwarte podprzestrzenie przestrzeni Hausdorffa są domknięte (istnieją przestrzenie   niemające tej własności).

Zobacz też

edytuj

Bibliografia

edytuj