Twierdzenia van Aubela – twierdzenia geometrii płaskiej przypisywane H.H. van Aubelowi. W literaturze geometrycznej określenie twierdzenie van Aubela używane jest w odniesieniu do przynajmniej dwóch różnych wyników.
Przypuśćmy, że jest dany czworokąt Po zewnętrznej stronie każdego boku tego czworokąta zbudujmy kwadrat, otrzymując kwadraty i (takie, że odcinek jest bokiem kwadratu ). Wówczas punkty przecięcia przekątnych kwadratów zbudowanych na przeciwległych bokach wyjściowego czworokąta wyznaczają parę odcinków równych i prostopadłych. Inaczej mówiąc, jeśli są środkami kwadratów (odpowiednio), to odcinki i są prostopadłe i mają tę samą długość.
Dowód
Rozważmy obrót o dookoła punktu przy którym punkt przechodzi na punkt Niech oznacza obraz punktu przy tym przekształceniu. Wówczas, odcinki i są równe i prostopadłe. Z tego wynika, że odcinki i są równe i równoległe, czyli czworokąt jest równoległobokiem. Niech będzie środkiem odcinka Ponieważ jest to środek odcinka zatem jest to również środek kwadratu opartego na boku czyli odcinki i są równe i prostopadłe. Analogicznie dowodzimy, że odcinki i są równe i prostopadłe. To oznacza, że przy takim obrocie o dookoła punktu że punkt przechodzi na punkt punkt przechodzi na punkt – zatem istotnie, odcinki i są równe i prostopadłe, co kończy dowód
Niech będzie dany trójkąt i niech będzie punktem przecięcia trzech prostych łączących wierzchołki trójkąta z przeciwległymi bokami (lub ich przedłużeniami). Niech proste te będą wyznaczone przez odcinki i gdzie Wówczas[1]
Dowód
Niech oznacza pole trójkąta Trójkąty i mają wspólny bok, więc stosunek ich pól jest równy stosunkowi ich wysokości, a ten ostatni jest taki sam jak Zachodzi więc
skąd wynika, że
Rozważając trójkąty i zauważamy, że mają one tę samą wysokość (opuszczoną ze wspólnego wierzchołka ), a zatem stosunek ich pól jest taki sam jak stosunek długości ich podstaw:
W podobny sposób otrzymujemy też
Zatem
a z tych równości wynika, że
(i)
Analogicznie uzasadniamy równość
(ii)
Dodając stronami równości (i) oraz (ii), otrzymujemy