Twierdzenie o mnożeniu
twierdzenie matematyczne kombinatoryki
Twierdzenie o mnożeniu – twierdzenie matematyczne dotyczące iloczynu kartezjańskiego zbiorów skończonych:
Jeżeli zbiór ma elementów, a zbiór ma elementów, to liczba różnych par takich, że wynosi [1]
Dowód
edytujDowód oparty na kombinatoryce
edytujBardzo prosty dowód tego twierdzenia można przeprowadzić korzystając z reguł kombinatoryki.
Niech i będą skończonymi niepustymi zbiorami. Wybierzmy jeden dowolny element . Zauważmy, że istnieje (zapis ten oznacza moc zbioru ) możliwości wyboru elementu ze zbioru . Dla każdego wybranego istnieje możliwości wyboru elementu ze zbioru . Wybory elementów i są niezależne, więc zgodnie z regułą mnożenia, łączna liczba par wynosi . Zatem możemy stwierdzić, że [2].
Przypisy
edytuj- ↑ Sebastian Pauli , Cardinality of Cartesian Products [online], MAT 112 Integers and Modern Applications for the Uninitiated [dostęp 2024-06-30] (ang.).
- ↑ MATHEMATICS [online], Stack Exchange, 10 grudnia 2014 [dostęp 2024-06-30] (ang.).