Równanie Słuckiego

równanie różniczkowe cząstkowe (RRC) używane w ekonomii

Równanie Słuckiego, którego nazwa pochodzi od Jewgienija Słuckiego, opisuje zmianę popytu w rozumieniu Marshalla (nieskompensowanego) będącą wynikiem zmiany popytu w rozumieniu Hicksa (skompensowanego). Równanie pokazuje, że zmiana popytu na dobro wywołana zmianą ceny jest spowodowana przez dwa efekty:

Równanie Słuckiego dekomponuje zmianę popytu na dobro -tego w wyniku zmiany ceny -tego dobra:

gdzie oznacza popyt w rozumieniu Hicksa, oznacza popyt w rozumieniu Marshalla, jest wektorem cen, jest budżetem lub poziomem dochodów, zaś jest ustalonym poziomem użyteczności obliczonym poprzez maksymalizację użyteczności przy oryginalnych cenach i budżecie, formalnie określonym za pomocą funkcji wartości Prawa strona równania jest równa zmianie popytu na -te dobro przy utrzymaniu użyteczności na poziomie minus popyt na -te dobro, przemnożone przez zmianę popytu na -te dobro pod wpływem zmiany budżetu.

Pierwsze wyrażenie po prawej stronie równania wyraża efekt substytucyjny, a drugie – efekt dochodowy. Efektu substytucyjnego, podobnie jak użyteczności, nie da się bezpośrednio zaobserwować. Można go oszacować na podstawie dwóch obserwowalnych składników równania Słuckiego. Ten proces jest znany jako dekompozycja Hicksa.

Równanie może zostać sformułowane w inny sposób, wykorzystując elastyczność:

gdzie jest (nieskompensowaną) elastycznością cenową, jest skompensowaną elastycznością cenową, jest elastycznością dochodową -tego dobra, a jest udziałem w ograniczeniu budżetowym -tego dobra.

Wyprowadzenie wzoru

edytuj

Chociaż istnieje wiele sposobów na wyprowadzenie równania Słuckiego, poniższa jest prawdopodobnie najprostsza. Zaczynając od zależności   gdzie   jest funkcją wydatków, a   otrzymuje się za pomocą maksymalizacji użyteczności przy danych   oraz   Wyliczenie pochodnej po   daje następujący wynik:

 

Wykorzystując zależność   wynikającą z lematu Shepharda oraz to, że dla optimum

  gdzie   jest funkcją wartości, powyższe równanie można podstawić do wcześniejszego i przepisać całość jako równanie Słuckiego.

Macierz Słuckiego

edytuj

Równanie Słuckiego można zapisać w postaci macierzowej:

 

gdzie   jest operatorem różniczkowania po cenie, zaś   jest operatorem różniczkowania po budżecie.

Macierz   nosi nazwę macierzy substytucyjnej Hicksa i jest formalnie zdefiniowana jako:

 

Definicja Macierzy Słuckiego jest następująca:

 

Gdy   jest maksymalną użytecznością, którą konsument osiąga przy cenach   i dochodzie  , to jest  , równanie Słuckiego implikuje, że każdy element macierzy Słuckiego   jest równy odpowiadającemu mu elementowi macierzy substytucyjnej Hicksa  . Macierz Słuckiego jest symetryczna, a kiedy funkcja wydatków   jest wklęsła, macierz Słuckiego jest również ujemnie półokreślona.

Zmiana wektora cen

edytuj

Gdy mamy do czynienia z dwoma dobrami, równanie Słuckiego w formie macierzowej jest następujące:

 

Chociaż równanie Słuckiego dotyczy tylko nieskończenie małych zmian cen, standardowo jest używane jako liniowe przybliżenie dla skończonych zmian. Jeśli ceny dwóch dóbr zmieniają się o   i  , wpływ na popyt na oba dobra jest następujący:

 

Mnożąc macierze, wpływ na dobro 1, będzie

 

Pierwszy składnik to efekt substytucji. Drugi składnik to efekt dochodowy, składający się z reakcji konsumenta na utratę dochodu pomnożoną przez wielkość utraty dochodu z wzrostu ceny każdego z dóbr.

Zobacz też

edytuj

Bibliografia

edytuj
  • The Slutsky Equation, [w:] Hal Ronald Varian, Microeconomic analysis, wyd. 3, New York: Norton, 1992, s. 119, ISBN 0-393-95735-7, OCLC 24847759 [dostęp 2019-06-06].
  • Philip Jackson Cook, A „One Line” Proof of the Slutsky Equation, „The American Economic Review”, 62 (1/2), 1972, s. 139–139, ISSN 0002-8282, JSTOR1821480 [dostęp 2019-06-11].