Dane tabelaryczne algorytmu DES
W poniższym artykule znajdują się dane tabelaryczne niezbędne do implementacji algorytmu DES a także pomocne podczas jego kryptoanalizy.
Permutacja początkowa (IP)
edytujPermutacja początkowa przeprowadzana jest na wszystkich blokach danych przed pierwszym cyklem szyfrowania. Jej celem nie jest zwiększenie bezpieczeństwa szyfru lecz ułatwienie wprowadzania danych i szyfrogramu do układu.
58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 | 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 | 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
Powyższą tabelę odczytujemy od lewej do prawej, z góry na dół. Permutowanie bitów wygląda następująco: na miejsce bitu pierwszego wstawiamy bit 58, na miejsce bitu drugiego wstawiamy bit 50. Analogicznie postępujemy z pozostałymi bitami.
Permutacja końcowa (IP-1)
edytujPermutacja końcowa wykonywana jest po ostatnim cyklu szyfrowania. Jest odwrotnością permutacji początkowej.
40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 | 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 | 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 | 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 | 33 | 1 | 41 | 9 | 49 | 17 | 57 | 25 |
Permutacja rozszerzająca (E)
edytujPermutacja rozszerzająca stosowana jest podczas rozszerzania prawej połowy danych z 32 bitów do 48 bitów.
32 | 1 | 2 | 3 | 4 | 5 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 12 | 13 | 14 | 15 | 16 | 17 |
16 | 17 | 18 | 19 | 20 | 21 | 20 | 21 | 22 | 23 | 24 | 25 |
24 | 25 | 26 | 27 | 28 | 29 | 28 | 29 | 30 | 31 | 32 | 1 |
Permutacja klucza 1 (PC-1)
edytujPermutacja PC-1 jest stosowana do wybrania 56 z 64 bitów klucza, który jest później dzielony na dwie części w celu dokonania niezależnych cyklicznych przesunięć bitów.
Lewa część | ||||||
57 | 49 | 41 | 33 | 25 | 17 | 9 |
1 | 58 | 50 | 42 | 34 | 26 | 18 |
10 | 2 | 59 | 51 | 43 | 35 | 27 |
19 | 11 | 3 | 60 | 52 | 44 | 36 |
Prawa część | ||||||
63 | 55 | 47 | 39 | 31 | 23 | 15 |
7 | 62 | 54 | 46 | 38 | 30 | 22 |
14 | 6 | 61 | 53 | 45 | 37 | 29 |
21 | 13 | 5 | 28 | 20 | 12 | 4 |
Permutacja klucza 2 (PC-2)
edytujPermutacja PC-2 wybiera do szyfrowania 48 z 56 bitów klucza wygenerowanego dla danej rundy.
14 | 17 | 11 | 24 | 1 | 5 |
3 | 28 | 15 | 6 | 21 | 10 |
23 | 19 | 12 | 4 | 26 | 8 |
16 | 7 | 27 | 20 | 13 | 2 |
41 | 52 | 31 | 37 | 47 | 55 |
30 | 40 | 51 | 45 | 33 | 48 |
44 | 49 | 39 | 56 | 34 | 53 |
46 | 42 | 50 | 36 | 29 | 32 |
Permutacja P-bloku
edytujPermutacja w P-blokach wykonywana jest po przejściu danych przez S-bloki.
16 | 7 | 20 | 21 | 29 | 12 | 28 | 17 |
1 | 15 | 23 | 26 | 5 | 18 | 31 | 10 |
2 | 8 | 24 | 14 | 32 | 27 | 3 | 9 |
19 | 13 | 30 | 6 | 22 | 11 | 4 | 25 |
Struktura S-boksów
edytujPodczas szyfrowania w S-boksach ma miejsce operacja podstawiania: za każde sześć bitów wejściowych podstawiamy cztery bity wyjściowe. Jeżeli bity wejściowe oznaczymy kolejno a1, a2, a3, a4, a5, a6 to bity a1 oraz a6 tworzą 2-bitową liczbę określającą wiersz, natomiast bity a2, a3, a4 oraz a5 tworzą liczbę 4-bitową określającą kolumnę (zarówno kolumny jak i wiersze numerujemy od zera). Na przecięciu określonego w ten sposób wiersza i kolumny znajduje się liczba wyjściowa bloku. Przykładowo, jeżeli na wejście pierwszego S-boksa podamy następujący ciąg bitów: 101010 to liczbą wyjściową będzie 0110.
S1 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 14 | 4 | 13 | 1 | 2 | 15 | 11 | 8 | 3 | 10 | 6 | 12 | 5 | 9 | 0 | 7 |
0yyyy1 | 0 | 15 | 7 | 4 | 14 | 2 | 13 | 1 | 10 | 6 | 12 | 11 | 9 | 5 | 3 | 8 |
1yyyy0 | 4 | 1 | 14 | 8 | 13 | 6 | 2 | 11 | 15 | 12 | 9 | 7 | 3 | 10 | 5 | 0 |
1yyyy1 | 15 | 12 | 8 | 2 | 4 | 9 | 1 | 7 | 5 | 11 | 3 | 14 | 10 | 0 | 6 | 13 |
S2 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 15 | 1 | 8 | 14 | 6 | 11 | 3 | 4 | 9 | 7 | 2 | 13 | 12 | 0 | 5 | 10 |
0yyyy1 | 3 | 13 | 4 | 7 | 15 | 2 | 8 | 14 | 12 | 0 | 1 | 10 | 6 | 9 | 11 | 5 |
1yyyy0 | 0 | 14 | 7 | 11 | 10 | 4 | 13 | 1 | 5 | 8 | 12 | 6 | 9 | 3 | 2 | 15 |
1yyyy1 | 13 | 8 | 10 | 1 | 3 | 15 | 4 | 2 | 11 | 6 | 7 | 12 | 0 | 5 | 14 | 9 |
S3 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 10 | 0 | 9 | 14 | 6 | 3 | 15 | 5 | 1 | 13 | 12 | 7 | 11 | 4 | 2 | 8 |
0yyyy1 | 13 | 7 | 0 | 9 | 3 | 4 | 6 | 10 | 2 | 8 | 5 | 14 | 12 | 11 | 15 | 1 |
1yyyy0 | 13 | 6 | 4 | 9 | 8 | 15 | 3 | 0 | 11 | 1 | 2 | 12 | 5 | 10 | 14 | 7 |
1yyyy1 | 1 | 10 | 13 | 0 | 6 | 9 | 8 | 7 | 4 | 15 | 14 | 3 | 11 | 5 | 2 | 12 |
S4 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 7 | 13 | 14 | 3 | 0 | 6 | 9 | 10 | 1 | 2 | 8 | 5 | 11 | 12 | 4 | 15 |
0yyyy1 | 13 | 8 | 11 | 5 | 6 | 15 | 0 | 3 | 4 | 7 | 2 | 12 | 1 | 10 | 14 | 9 |
1yyyy0 | 10 | 6 | 9 | 0 | 12 | 11 | 7 | 13 | 15 | 1 | 3 | 14 | 5 | 2 | 8 | 4 |
1yyyy1 | 3 | 15 | 0 | 6 | 10 | 1 | 13 | 8 | 9 | 4 | 5 | 11 | 12 | 7 | 2 | 14 |
S5 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 2 | 12 | 4 | 1 | 7 | 10 | 11 | 6 | 8 | 5 | 3 | 15 | 13 | 0 | 14 | 9 |
0yyyy1 | 14 | 11 | 2 | 12 | 4 | 7 | 13 | 1 | 5 | 0 | 15 | 10 | 3 | 9 | 8 | 6 |
1yyyy0 | 4 | 2 | 1 | 11 | 10 | 13 | 7 | 8 | 15 | 9 | 12 | 5 | 6 | 3 | 0 | 14 |
1yyyy1 | 11 | 8 | 12 | 7 | 1 | 14 | 2 | 13 | 6 | 15 | 0 | 9 | 10 | 4 | 5 | 3 |
S6 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 12 | 1 | 10 | 15 | 9 | 2 | 6 | 8 | 0 | 13 | 3 | 4 | 14 | 7 | 5 | 11 |
0yyyy1 | 10 | 15 | 4 | 2 | 7 | 12 | 9 | 5 | 6 | 1 | 13 | 14 | 0 | 11 | 3 | 8 |
1yyyy0 | 9 | 14 | 15 | 5 | 2 | 8 | 12 | 3 | 7 | 0 | 4 | 10 | 1 | 13 | 11 | 6 |
1yyyy1 | 4 | 3 | 2 | 12 | 9 | 5 | 15 | 10 | 11 | 14 | 1 | 7 | 6 | 0 | 8 | 13 |
S7 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 4 | 11 | 2 | 14 | 15 | 0 | 8 | 13 | 3 | 12 | 9 | 7 | 5 | 10 | 6 | 1 |
0yyyy1 | 13 | 0 | 11 | 7 | 4 | 9 | 1 | 10 | 14 | 3 | 5 | 12 | 2 | 15 | 8 | 6 |
1yyyy0 | 1 | 4 | 11 | 13 | 12 | 3 | 7 | 14 | 10 | 15 | 6 | 8 | 0 | 5 | 9 | 2 |
1yyyy1 | 6 | 11 | 13 | 8 | 1 | 4 | 10 | 7 | 9 | 5 | 0 | 15 | 14 | 2 | 3 | 12 |
S8 | ||||||||||||||||
x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x | |
0yyyy0 | 13 | 2 | 8 | 4 | 6 | 15 | 11 | 1 | 10 | 9 | 3 | 14 | 5 | 0 | 12 | 7 |
0yyyy1 | 1 | 15 | 13 | 8 | 10 | 3 | 7 | 4 | 12 | 5 | 6 | 11 | 0 | 14 | 9 | 2 |
1yyyy0 | 7 | 11 | 4 | 1 | 9 | 12 | 14 | 2 | 0 | 6 | 10 | 13 | 15 | 3 | 5 | 8 |
1yyyy1 | 2 | 1 | 14 | 7 | 4 | 10 | 8 | 13 | 15 | 12 | 9 | 0 | 3 | 5 | 6 | 11 |
Przesunięcia klucza
edytujW każdej rundzie dokonywane jest cykliczne przesunięcie każdej połówki klucza o określoną liczbę bitów w lewo.
Numer rundy | Liczba bitów |
---|---|
1 | 1 |
2 | 1 |
3 | 2 |
4 | 2 |
5 | 2 |
6 | 2 |
7 | 2 |
8 | 2 |
9 | 1 |
10 | 2 |
11 | 2 |
12 | 2 |
13 | 2 |
14 | 2 |
15 | 2 |
16 | 1 |