Akwaporyny
Akwaporyny (AQP z ang. aquaporin) – integralne białka błonowe, które tworzą kanały, uczestniczące w procesie transportu wody (a także niektórych innych cząsteczek o podobnych rozmiarach np. glicerolu) przez półprzepuszczalne błony komórek organizmów żywych[1][2].
Historia
edytujWieloletnie badania mające na celu zidentyfikowanie kanałów transportujących wodę zostało uwieńczone sukcesem dopiero w 1992 roku, kiedy amerykański badacz Peter Agre po raz pierwszy opisał białko błon erytrocytów jako kanał transportujący cząsteczki wody. Początkowo białko to nazywano CHannel-forming Integral Membrane Protein 28 (w skrócie CHIP 28), a potem akwaporyną 1 (AQP1). Za odkrycie akwaporyn Peterowi Agre przyznano Nagrodę Nobla w dziedzinie chemii za rok 2003[3] (wraz z Roderickiem MacKinnonem, który prowadził badania nad budową i działaniem kanałów potasowych[4]).
Budowa
edytujBiałka akwaporynowe składają się z 6 transbłonowych segmentów alfa-helikalnych. Por ma średnicę 0,3 nm co oznacza, że w świetle kanału mieści się dokładnie jedna cząsteczka wody.
Akwaporyny ssaków są tetramerami, zbudowanymi z czterech monomerycznych jednostek o masie cząsteczkowej 28 kDa, z których każda jest kanałem dla cząsteczek wody[5].
Funkcja
edytujW wielu komórkach ludzkiego organizmu stwierdza się obecność akwaporynowych kanałów transportu wody. Są one także w pewnych komórkach bakteryjnych i komórkach roślinnych, gdzie zlokalizowane są zarówno w błonie plazmatycznej, jak i tonoplastach[6].
Porównanie akwaporyn
edytujDo chwili obecnej (2008) opisano 13 akwaporyn, które podzielono na dwie grupy w zależności od przepuszczalności tylko dla wody (np. AQP1) lub dla wody i innych cząsteczek, takich jak glicerol (np. AQP3). Ta druga grupa jest niekiedy nazywana akwagliceroporynami.
Typ | Miejsce występowania[7] | Funkcja[7] |
---|---|---|
Akwaporyna 1 |
|
Reabsorpcja wody |
Akwaporyna 2 |
|
Reabsorpcja wody w odpowiedzi na ADH |
Akwaporyna 3 |
|
Reabsorpcja wody |
Akwaporyna 4 |
|
Reabsorpcja wody |
Genetycznie uwarunkowane defekty metaboliczne akwaporyn
edytujPrzy genetycznie uwarunkowanym defekcie AQP2 (akwaporyny-2), zlokalizowanej w komórkach nerkowych cewek zbiorczych, dochodzi do nerkowej moczówki prostej, kiedy nerki nie zagęszczają moczu w odpowiedzi na wydzielanie hormonu antydiuretycznego[8][9].
Przypisy
edytuj- ↑ Loo DD., Wright EM., Zeuthen T. Water pumps. „J Physiol”. Jul 1;542. Pt 1, s. 53–60, 2002. PMID: 12096049.
- ↑ Borgnia M., Nielsen S., Engel A., Agre P. Cellular and molecular biology of the aquaporin water channels. „Annu Rev Biochem”, s. 425–458, 2000. DOI: 10.1146/annurev.biochem.68.1.425. PMID: 10872456.
- ↑ Knepper MA., Nielsen S., Agre PC. Peter Agre, 2003 Nobel Prize winner in chemistry. „J Am Soc Nephrol”. 4 (15), s. 1093–1095, 2004. PMID: 15034115.
- ↑ Informacje o Nagrodzie Nobla z dziedziny chemii (2003) z internetowego serwisu noblowskiego.
- ↑ Gonen T., Walz T. The structure of aquaporins. „Q Rev Biophys”. 4 (39), s. 361–396, 2006. DOI: 10.1017/S0033583506004458. PMID: 17156589.
- ↑ Barone LM., Shih C., Wasserman BP. Mercury-induced conformational changes and identification of conserved surface loops in plasma membrane aquaporins from higher plants. Topology of PMIP31 from Beta vulgaris L. „J Biol Chem”. Dec 5;272. 49, s. 30672–30677, 1998. PMID: 9388202.
- ↑ a b Jeśli nie podano inaczej, źródłem jest: Walter F., PhD. Boron: Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders, 2005, s. 842. ISBN 1-4160-2328-3.
- ↑ Deen PM., Verdijk MA., Knoers NV., Wieringa B., Monnens LA., van Os CH., van Oost BA. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. „Science”. Apr 1;264. 5155, s. 92–95, 1994. PMID: 8140421.
- ↑ Kuwahara M. Aquaporin-2, a vasopressin-sensitive water channel, and nephrogenic diabetes insipidus. „Intern Med”. 2 (37), s. 215–217, 1998. PMID: 9550615.
Linki zewnętrzne
edytuj- Małgorzata Jasiewicz, Janusz Myśliwiec. Aktualny stan wiedzy o akwaporynach: implikacje kliniczne. „Endokrynol Pol”. 2 (57), s. 149–157, 2006.