Lemat Łuzina

twierdzenie teorii miary

Lemat Łuzina – twierdzenie mówiące, że każda probabilistyczna miara borelowska na przestrzeni polskiej jest wewnętrznie regularna (tj. jest miarą Radona). Twierdzenie udowodnione zostało przez rosyjskiego matematyka Nikołaja Łuzina.

Dowód

edytuj

Niech (Ω, d) będzie przestrzenią polską, a μ oznacza miarę probabilistyczną na Ω. Niech ciąg (an) będzie gęsty w Ω, a ponadto ε > 0. Dla dowolnie wybranych liczb naturalnych n, k niech dane będą zbiory

 

Wówczas

 

Dla każdego k istnieje zatem taka liczba naturalna n(k), że

 

Niech

 

Zbiór K jest domknięty i całkowicie ograniczony, a więc z zupełności Ω jest to zbiór zwarty. Ponadto

 

Dowodzi to wewnętrznej regularności miary μ.

Bibliografia

edytuj
  • G. Blower, Random Matrices: High Dimensional Phenomena, ser. London Mathematical Society Lecture Notes. Cambridge, U.K., Cambridge Univ. Press, 2009, ss. 17-18.
  • Alexander S. Kechris: Classical descriptive set theory. Nowy Jork: Springer-Verlag, 1995, seria: Graduate Texts in Mathematics, 156. ISBN 0-387-94374-9.